E&SC Improvements during the Construction Phase

Melanie M. McCaleb, CPESC (melanie_mccaleb@ncsu.edu) Richard A. McLaughlin, Ph.D. Scott King, LSS

Sediment is single largest pollutant in NC Waterways!

NC STATE UNIVERSITY DEPARTMENT of **SOIL SCIENCE**

AGRICULTURE & LIFE SCIENCES

Example of Construction Impacts on Streams

 Construction site greatly increases in-stream turbidity during storm events

NC Discharge Regulations

From an active construction site50 NTUs (nephelometric turbidity units)10 NTUs for Trout waters

New Policy from EPA

 Need to set Effluent Limit Guidelines (ELGs) and New Source Performance Standards (NSPS)

EPA Effluent Limitation Guideline Policy

- Construction sites:
 - disturbing <u>ten or more acres</u> at a time would also be required to install <u>sediment basins</u> to treat their stormwater discharges.
 - In addition, if sites <u>30 acres or larger</u> are located in areas of the country with high rainfall intensity and soils with a high clay content, their stormwater discharges would be <u>required</u> to meet a numeric limit on the allowable level of <u>turbidity</u>.

Four Options

- All sites must develop and implement stormwater pollution prevention plans (SWPPPs).
- To establish minimum best management practice (BMP) standards (i.e. sizing criteria and performance standards for sediment basins, as well as other BMPs currently required in EPA's Construction General Permit).
- To establish a numeric standard for designing sediment basins to remove a specified particle size fraction of sediment derived for specific sites based on a multi-variable equation that takes into consideration settling velocity, particle diameter, soil type, etc.
- To establish a numeric standard for turbidity or total suspended solids for discharges from sediment ponds, which most likely would require water from the pond to be pumped to a separate treatment system prior to discharge.

Changes Coming!

Erosion Prevention: First Line of Defense

Erosion: Bare vs. Grass*

*50' slope, silt soil, Raleigh weather

Straw Mulch Problems

- Not enough straw applied
- Insufficient tack on mulch
- Too steep or long of slope for straw mulch

DEPARTMENT of SOIL SCIENCE

AGRICULTURE LIFE SCIENCES

Erosion Control: Can Polyacrylamide Help?

PAM

Polyacrylamide (PAM)

Water soluble synthetic polymer

• Forms: dry powder, solution, emulsion, 'logs'

Polyacrylamide (PAM)

 Very common for water treatment uses, including drinking water and apple/grape juice clarification

DEPARTMENT of SOIL SCIENCE

Sedimentation: Size Matters

Flocculation by PAM

 PAM binds (or flocculates) suspended sediment by attaching to several soil particles forming a larger aggregate or floc.

Flocculation by PAM
The larger (and now heavier) flocs then settle out of suspension.

Flocculation

What's your next question?

PAM Toxicity?

- PAM is known to be relatively non-toxic as measured by acute (LD₅₀) tests.
- Chronic tests on fish also show low toxicity.
- Chronic effects on smaller species less well known, but toxicity appears to be very low for these as well.

Effluent Test: *Ceriodaphnia dubia* 7day chronic reproduction

Suspended Sediment Effects Newcombe & McDonald, 1991

Review of 120 Studies

Rank	Description of effect
14	>80 to 100% mortality
13	>60 to 80% mortality
12	>40 to 60% mortality, severe habitat degradation
11	>20 to 40% mortality
10	0 to 20% mortality
9	Reduction in growth rates
8	Physiological stress and histological changes
7	Moderate habitat degradation
6	Poor condition of organism
5	Impaired homing
4	Reduction in feeding rates
3	Avoidance response, abandonment of cover
2	Alarm reaction, avoidance reaction
1	Increased coughing rate

COLLEGE OF

Suspended Sediment Effects on Aquatic Organisms

ACADEMICS

RESEARCH

DEPARTMENT of SOIL SCIENCE

Straw Enhanced by PAM

Hydraulically Applied Mulch

- Currently used as a tackifier for straw mulch
- Under evaluation as ground cover

Hydraulically Applied Mulch

Example: bonded fiber matrix – 3,000-4,000 lbs/ac – Slope: 2:1 and steeper

Application technique is critical

Erosion Studies Conclusions

- Any ground cover is better than none (90% coverage rule / 21 day requirement).
- Hydromulches and blankets may be more effective than straw (still evaluating this).

Does PAM Reduce Erosion?

- PAM usually reduced erosion rates by 50% or more for typical ground covers.
- Straw + PAM (20 lb/ac or more) can outperform blankets and hydromulch.

Options for Ditch Check Dams

Other Options for Check Dams

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

AGRICULTURE & LIFE SCIENCES

Other Options for Check Dams

Triangular Silt Dike™

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE AGRICULTURE LIFE SCIENCES

Check Dam Placement/Installation...

Alternative Check Dam System

Standard Checks/Traps

Coir/Straw Checks, PAM

Standard BMPs over time – 5 months after paving

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

AGRICULTURE & LIFE SCIENCES

Standard BMPs over time - 5 months after paving

DEPARTMENT of SOIL SCIENCE

AGRICULTURE X LIFE SCIENCES
Exp BMPs over time – 5 months after paving

DEPARTMENT of SOIL SCIENCE

AGRICULTURE LIFE SCIENCES

Exp BMPs over time – 5 months after paving

DEPARTMENT of SOIL SCIENCE

AGRICULTURE LIFE SCIENCES

4,000 NTU

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

19 NTU!

Results through December 2006

Typical tools and products needed for installation

Close up of the mesh

Wattle Theft!

Fiber Check with 'flaps' or 'wings'

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

AGRICULTURE & LIFE SCIENCES

Proper installation required...

Cost Estimate Comparison

Site 1:

411' Standard section\$890 / \$416 to maintain\$2.16 / ft612' Experimental BMPs + PAM\$854 / \$79 to maintain\$1.39 / ft423' Experimental BMPs only\$772 / no maintenance\$1.82 / ft

Site 2:

465' Standard section\$890 / \$416 to maintain\$1.91 / ft447' Experimental BMPs + PAM\$926 / \$76 to maintain\$2.07 / ft

The logs and wattles do not have to be removed either, they can decompose in place.

Check Dams as Lawn Art

Other Approaches to Improvements

- Sediment Basins/Traps
 - Surface Outlets

- Baffles

- Turbidity Reduction: Chemical Treatment (Polyacrylamide – PAM)
 - Passive and active uses
 - Solid and liquid forms

Riser Barrel Outlet

Surface Outlet (Faircloth Skimmer)

DEPARTMENT of SOIL SCIENCE

Surface Outlet (skimmers)

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

AGRICULTURE & LIFE SCIENCES

COLLEGE

Skimmer Basin Functions

- Skimmer basins back up inflow to create a standing pool
- Pool acts to slow flow and drop sediment
- Basins dewater primarily over emergency spillways during actual storm events
- Skimmer dewaters basin between storms

Skimmer Basin

Skimmer

Spillway

Turbid water still likely...

Basin Inlet with a Standing Pool

Skimmer Basin: With and Without PAM in Ditches

Flashboard Riser Outlet

Flashboard Riser Outlet

- Adjustable standing pool
- Can empty for sediment removal
- Could be used for stormwater wetlands etc.
- Doesn't automatically dewater
- Could be left open...

Porous

Silt Fence/Weir

Measuring Baffle Effects

Effects of Baffles: Particle Distribution

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE GRICULTURE & LIFE SCIENCE

Effects of Baffles: Velocity

Installation Important...

These baffles not installed well

Connect high into side slopes or bypass erosion will occur.

NC STALL ON THE SOLL SCIENCE

Do Not Use Jute Alone!

Baffles Should Not Be Overtopped!

DEPARTMENT of SOIL SCIENCE

AGRICULIURE LIFE SCIENCES ACADEMICS + RESEARCH + EXTENSION

Work well when installed right...

DEPARTMENT of SOIL SCIENCE

AGRICULTURE & LIFE SCIENCES

Protect Inlet!

4 Tons of Sc

Simple Inlet Protection

Sediment Bags are a good 'polishing

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

AGRICULTURE & LIFE SCIENCES

Review: Ground Covers

Failure Rate More Risk

- Straw (\$1500/ac)
- Straw + PAM (\$1800/ac)
- Low end blankets, hydromulch (\$3-4,000/ac)
- Better blankets, hydromulch (\$5-8,000/ac)

Less Risk

Review: Check Dams/Inlet Protection

More Risk

	 Fiber wattles (with poor installation, undercutting)
	 Rock (poor pooling, erosion)
	 Fiber wattles (well installed, and
Less Risk	especially those with 'wings' or 'flaps')

Review: Sediment Basin

More Risk • Any basin w/ steep sides, unprotected inlet

- Rock Outlet Trap (high sediment losses)
- Riser barrel (somewhat high sediment losses)

Skimmer w/ Spillway (very efficient)

COLLEGE OF

NC STATE UNIVERSITY DEPARTMENT of **SOIL SCIENCE**

Less Risk

Ideal LID design

 Check dams with PAM placed in ditches feeding basins spaced such that flow goes from pool to pool...

Flow enters a skimmer basin with baffles

Skimmer basin with baffles (top view)

Coir Baffles

Any Questions?

melanie_mccaleb@ncsu.edu

www.bae.ncsu.edu/workshops/index.php